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SUMMARY 
This work describes a practical way of constructing a spectral representation of linear boundary value 
problems (BVPs) using a tau method. All BVPs are treated as first-order systems, unlike most implementa- 
tions which tend to view the problem in terms of a single high-order differential equation. For most 
applications this formulation will adhere more closely to the natural derivation of the original equations 
from, for example, a series of conservation laws. The technique is exemplified for Chebyshev polynomials in 
a variety of real applications, although detailed results are provided for any polynomial basis. 
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1. INTRODUCTION 

This work aims to describe and exemplify a practical implementation of the spectral tau method 
for a selection of eigenvalue problems from mathematical physics. For our purposes, instability 
ensues whenever there is an eigenvalue with a positive real part and in practice this can happen 
via a stationary (real eigenvalue) or overstable (complex eigenvalue) mode, depending on the 
region of parameter space in which the problem is posed. On many occasions a principle of 
exchange of stabilities can be operative (i.e. instability can only ensue through stationary modes) 
and in this event tracking methods using inverse iteration or compound matrices are usually very 
effective, but otherwise the discontinuous dependence of critical eigenvalues on parametric 
variables can greatly reduce the effectiveness of these methods and it is in this latter environment 
that spectral techniques play an invaluable role. 

The application of spectral methods (using Chebyshev polynomials) in the solution of differen- 
tial equations is credited to Lanczos’ and Clenshaw.’ The Lanczos method has been developed 
and extensively applied to ordinary differential equations by Fox and Parker4 and others. 
O r ~ z a g ’ , ~  and Orszag and Kells’ have shown that expansions in Chebyshev polynomials are 
better suited to the solutions of hydrodynamic stability problems than expansions in other sets of 
orthogonal functions. The method proposed in this work is valid for any polynomial basis 
provided that some basic requirements (to be detailed shortly) are satisfied, although in practice 
Chebyshev polynomials would be used over finite intervals unless errors are measured by some 
eccentric norm. Our experience suggests that within the gambit of eigenvalue problems the 
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performance of Legendre polynomials is marginally inferior to that of Chebyshev polynomials 
and imposes more coding difficulties. In fact, both families of polynomials essentially satisfy the 
same difference equation for high orders and it seems reasonable that this property largely 
explains the comparable performance characteristics. 

In more recent times, applications of spectral methods have been troubled by the emergence of 
spurious eigenvalues (with large positive real parts) in situations in which the mathematical 
solution is known to be stable. We mention the work of Gottlieb and Orszag,' Brenier et al.' and 
Zebib," who all report this phenomenon in the context of hydrodynamic stability. More recently, 
Zebib'l has developed a Galerkin scheme and Gardner et ~ 2 . ' ~  have developed a 'modified tau' 
scheme which circumvent these difficulties, but noticeably at the expense of practicality. These 
works have made an important contribution to the development of spectral methods to the extent 
that they describe procedures to irradicate the occurrence of spurious eigenvalues. However, we 
believe that these ideas must be tempered by practical considerations and that there is a compro- 
mise position for an easily implementable scheme capable of handling systems of sizable order 
(say 12 or above) with variable coefficients but resistant to the occurrence of spurious eigenvalues. 

It is appropriate to provide some further illumination on the meaning of 'practical' in the 
context of spectral techniques. There are two aspects to consider, namely the final formulation of 
the mathematical problem and its transformation into an equivalent numerical problem. Typi- 
cally most eigenvalue problems are developed from a series of Conservation laws such as mass 
conservation, momentum conservation, energy conservation, Maxwell's equations in the case of 
electromagnetically responsive materials, solute conservation in the case of salting or diffusion 
effects, etc. Hence in a real application it is often unnatural to formulate the problem in terms of 
a single high-order equation, not to mention the feasibility of doing this in any sensible fashion. 
On the other hand it is usually very easy to formulate the problem as a first-order system when it 
is derived from individual conservation equations and, as a bonus, this representation also 
simplifies the boundary conditions. In the following sections it will become clear that the 
construction of the spectral matrices for first-order systems is sufficiently straightforward that it 
can be done automatically by a utility programme. 

It is important to notice that both numerically and mathematically the first-order system 
representation of the problem differs subtly from that associated with the single high-order 
equation. In the former, derivatives are treated as independent variables and enjoy their indi- 
vidual expansion, whereas in the latter, derivatives are generated from the basic solution by 
differentiating the spectral expansions and thus are relegated to the status of dependent variables. 
This latter approach potentially creates an unstable representation of the problem which 
manifests itself through spurious eigenvalues, whereas in the case of the first-order system it is 
reasonable to attribute the increased suppression of spurious eigenvalues to the superior numer- 
ical representation of high derivatives. Similar benefits are enjoyed in the treatment of boundary 
conditions, which essentially consist of a series of linearly independent relationships connecting 
the independent variables, and in particular it is no longer necessary to compute higher 
derivatives of the spectral polynomials on the boundaries. 

The main drawback of this new approach lies in the fact that the spectral matrices are 
considerably larger than those generated by the techniques of Orszag5 or Gardner et al.12 It is 
conceivable that in very extreme cases RAM limitations may be a fatal handicap, but for the vast 
majority of applications the exceptional convergence qualities of spectral methods usually 
guarantee that 20 or so polynomials are more than adequate. Thus for most purposes this 
drawback is more than counterbalanced by the ease of coding and the resilience to the generation 
of spurious eigenvalues. 
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2. SOME GENERAL REMARKS ON ORTHOGONAL POLYNOMIALS 

Let no(x) ,  n l (x ) ,  n2(x) ,  . . . , be a family of real polynomials orthogonal with respect to the weight 
function w ( x )  over the real interval d and such that nr(x) has degree r. The inner product (f; g )  
over 9 is defined by the rule 

<f; g ) = ~ y w ( x ) f ( x ) d x ) d x  

and with respect to this inner product the polynomials nr(x), r 20, satisfy 

Although the weight function w ( x )  and interval 9 uniquely define the family members up to 
a multiplicative constant, traditionally such families are viewed as the polynomial solution of 
some second-order differential equation or are constructed from a generating function. For the 
purposes of this work it is most profitable to regard the ns as solutions of the second-order 
difference equation 

no= 1, nr + 1 = ( x  - 6 r  + 1 ) nr(x) -Y:+ 1 nr- 1 (x) ,  (3) 

where conventionally, n - ( x )  = 0 and 6,+ and y:+ are defined by 

for r=O, 
~ ~ / p ~ - ~  for r 2 1 .  

for r 2 0, (xnr ,  nr> 
6 r +  1 = 

P r  
(4) 

Spectral analyses with polynomial bases rely critically on the fact that the set of all polynomials is 
closed under differentiation and multiplication. In the context of the n-family the derivative of 
nr(x)  is expressible as a linear combination of no(x), . . . , Z ~ - ~ ( X )  and the product n,(x) n,(x) is 
expressible as a linear combination of no(x) ,  . . . , x , , + , ~ ( x ) .  In fact, the construction of the 7cs from 
(2) attributes them with the property that n,(x)n,(x)  is a linear combination of 
nIr-sl(x), . . . , Z ~ + ~ ( X ) .  This feature of orthogonal polynomials is not widely known and is proved 
by induction. To sum up, it is always possible to find D., and Pnmk such that whenever n 2 m  

For completeness, the specific forms of (5) for Chebyshev polynomials T,,(x), Hermite poly- 
nomials H,,(x), Laguerre polynomials L n ( x )  and Legendre polynomials p , , ( ~ )  are now recorded 
and specific forms of D can be extracted from these results for a particular application. Most 
comprehensive accounts of the functions of mathematical physics reference the derivative results 
and it is well known that 

n even, 

( n -  3 ) / 2  1 2nT, , -2r-1(x)+nT0(x) ,  n odd, 
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. ,. 1 (2n-4r-1)P,-2r-1(x), n odd. 

However, except for Chebyshev polynomials, forms for n,(x)nm(x) are obscure. It can be shown 
that 

r = O  

Tffn + m - 2r(X) 
m 

~ , ( x ) ~ , ( x )  = n! m! C 
r = O  r!(n-r)!(m-r)!' (7) 

where it is assumed that n > m  and anmr and A,  are given by the expressions 

Future sections of this work will assume approximate representations of functions in terms of 
a finite series of spectral polynomials. This is therefore an opportune point to discuss this problem 
in some detail. Suppose that 

n 

f (x)  1 cr nr - 1 (x); 
r =  1 

then the orthogonality of no(x), . . . ,n,- l(x) leads to the immediate conclusion that 

1 
P r -  1 

cr =- jF w(x)f(x) 71,- 1 (XI dx 

and this is approximated by the Gaussian quadrature of maximum precision to obtain 

1 "  
C r = -  akf(Xk)nr-l(Xk)? 

P r - 1  k = l  
(9) 

where x l , .  . . , x, are the zeros of n,(x) and are all guaranteed to lie in the interval 9. Essentially 
Gaussian quadratures provide a mechanism for constructing discrete orthogonality relations. 
Clearly this procedure is only sensible once the x l ,  . . . , x, and a l ,  . . . , a, are known. It is 
relatively straightforward to verify that n,(x) is the characteristic polynomial of the real, symmet- 
ric, tridiagonal n x n matrix 

Thus the zeros of nn(x) are the eigenvalues of this matrix and can be determined accurately using 
the QR algorithm. Moreover, suppose that v(')= @ek is the eigenvector associated with the 
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eigenvalue xj; then the quadrature weight aj is given by 

These latter results are presented without any justification and the reader is referred to 
Reference 13 for further details. In conclusion, the coefficients cl,. . . , c, are thus determined for 
any choice of polynomial basis. 

3. THE CHEBYSHEV SPECTRAL REPRESENTATION 

This work aims to develop a spectral representation of the general linear eigenvalue problem 

-=AY+ilBY, zE(a, b), (10) 
dY 
dz 

where Y is an N-vector with components y, ,  . . . , y ,  and A and B are complex matrices whose 
entries only depend on the real variable x. The technique will be described in detail for the 
Chebyshev representation since this is the scenario for the vast majority of applications. Equi- 
valent results will be stated for any polynomial basis on the assumption that the coefficients 
arising in ( 5 )  are known. System (10) must be supplemented by N boundary conditions, which 
need to be linearly independent on any given boundary. The eigenvalue itself may occur linearly 
in these conditions and indeed this happens with Stekloff problems which typically arise in 
variational problems containing a transversality condition. Such conditions often appear in 
energy analytic methods. 

The Chebyshev polynomials T,(x) are orthogonal over the interval [- 1, I] with respect to the 
weight function w(x)=(l -x2)-’/’. Let us observe that the formula x =  - 1 +2(z- a)/@-a) maps 
[a, b] into [ - 1,1] and in the process derivatives with respect to z and x are related through the 
constant multiplying factor 2/(b - a). Similarly, all non-constant entries of A and B are mapped 
into equivalent forms in [ - 1, 1). Hence it is convenient to assume from the outset that equation 
(10) is already formulated in the interval [ - 1, 11. Suppose now that the components of Yare each 
approximated by a series of M polynomials so that 

M 

yr(x)= c Ujr?-1(X), l<r<AJ.  
j =  1 

In fact, (11) is not an exact solution of (10) but instead satisfies the differential equation 

dY 
-=((A(x)+AB(x))Y+R,(x), 
dx 

where RM is an N-dimensional vector describing the remainder term and whose nature will 
depend on the form of A and B. The strategy is based on the expectation that RM+O as M-+ 00. In 
view of (5),  each component of Y can be differentiated and the result expressed in terms of the 
original basis functions to obtain 

where 
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Although the right-hand side of (10) contains two terms, it is sufficient to treat A Y  and 
recognize that the discussion of BY is identical. The rth component of A Y is 

where Q,,k Tk - (x) is the Chebyshev expansion of the (r, s)th entry of A.  If any entry of A or 
B requires an infinite Chebyshev expansion (i.e. is not a polynomial), then the remainder term R M  

is an infinite sequence of Chebyshev polynomials. 
The apparent complexity of (14) suggests that this is a suitable point to look ahead and 

anticipate the nature of the mathematical problem this approach will generate. Let V be the 
MN-dimensional vector whose components are formed from N blocks, each of dimension M and 
in which the rth block has components air, . . . , aMr.  From (12) the component y: of Y' depends 
linearly on the coefficients q,,. . . , aMr, and when this observation is extended to Y itself, it is 
clear that the differentiation of Y can be viewed in terms of the matrix premultiplication of V by 
an M N  x M N  matrix E whose general form can be thought of in terms of N 2  blocks where each 
block is an M x M matrix. In fact, E is block diagonal with form diag(D, . . . , N times). 

In a similar way the right-hand side of equation (14) can be interpreted in terms of this block 
notation and effectively states that the (r, s)th block of the M N  x M N  matrix representing A Y has 
the form 

in view of property (7). In this double sum there are two cases of interest: either A,, is constant so 
that Qrsl is the only non-zero term in its Chebyshev expansion or A,, is a function of x with 
a potentially infinite Chebyshev expansion. In the former case it is clear that the (r ,  s)th block is 
filled by 

M c o r s l  T-lXis 
i =  1 

or in matrix terms by A J M ,  where I,,, is the identity M x M matrix. In fact, this result is true for 
every polynomial basis. Let us now suppose that A,, is not constant. In order to handle qk-,,(x), it 
is convenient to subdivide the second sum into the cases k < i  and k > i  and then treat each 
separately. After adjusting the summation index, it is easily verified that expression (1 5) can be 
rewritten in the form 

Suppose that this block is represented by the M x M matrix Q. It transpires that the structural 
symmetry of Q is masked by the contents of its first row and column. It is a matter of algebra to 
verify that the components of expression (16) pertaining to the first row and column of Q are 
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and since the first column is derived from the coefficient of a l s  and the first row is derived from the 
coefficient of To (x) ,  then clearly 

The remaining elements of Q describe the expression 

Q r s ( i - j + l ) q - , ( x )  

The terms in (18) contributing to the diagonal entries of Q are readily seen to be 

M 1 M  1 a i s Q r s 1  Ti-  1(x )+-  C a i s Q r s ( 2 i -  1 )  Ti-  1(x) 
i = 2  2 i = 2  

and hence Qii=Qrsl + f Q r s ( 2 i -  1 ) ,  i>2. Wheneverj>i, the contributing terms from (18) amount to 

I M  l M  
- 1 C a i s Q r s ( j - i + i ) T i - l ( x ) + -  C C a i s Q r s ( i + j - l ) q - l ( x )  
2 i = 2  j = i + i  2 i = 2  j = i +  1 

and thus Q i j = $ ( Q r s ~ i + j - l ~ + Q r s ~ j - i + l ~ ) ,  j > i .  Likewise, whenever i>j ,  the contributing terms 
from (18) are 

1 M i - 1  1 M i - 1  

- C C a i s Q r s ( i + j - l ) T j - l ( x ) + -  1 1 a i s Q r s ( i - j + l ) q - l ( X )  
2 i = 2  j = 2  2 i = 2  j = 2  

and thus Qij=$(Qrs(i+j- l ,+Qrs(i-J+l)) ,  i>j .  Of course, these three results can be unified into the 
form 

Qi i  = Q r s l  + t Q r s ( ~ i -  I ) ,  Qi j  = f ( Q r s ( i  + j - 1 )  + Q r s ,  I i - j I + I)), i, j 2 2, (19) 
and hence the matrix Q is symmetric except for the first row and column and has the form 
described by expressions (17) and (19). In fact, this symmetry feature of the block matrix Q is true 
whatever the choice of basis polynomials. 

The upshot of this analysis is that equation (10) is reduced to a generalized eigenvalue problem 
of type EV=AFV, where E and F are complex square matrices of type M N  x M N .  Boundary 
conditions must be added to the problem and these are included in a natural manner by 
overwriting the Nth, 2Nth,. . . , MNth rows of EV=IFV. Theoretically their order is imma- 
terial, but in practice it is beneficial to insert them in a manner which recognizes that any 
subsequent algebraic procedures will seek to upper triangularize F and reduce E to upper 
Hessenberg form. Thus any linear boundary eigenvalue problem is converted into a problem in 
numerical linear algebra and the spectrum can be computed using the 'Q  type transformations of 
numerical linear algebra.14 Our examples handle the eigenvalue problem E V=AFV with the 
NAG routine F02BJF when E and F are real and the NAG routine F02GJF for complex E and F. 

For a general polynomial basis of the type introduced in (3) and (4), the treatment of derivatives 
and constant matrix entries follows the same pattern as for Chebyshev polynomials. The major 
differences occur when A or B has non-constant terms and in this case the equivalent form for 
expression (3.7) is 
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The first row and column of Q are extracted from the terms 
m M 

a l s  Q r s k n k - l ( x ) +  1 Q r s i f i i i ( Z i - l ) c l i s  
k =  1 i = 2  

and lead to the conclusion that 

Without further justification it can be shown that the remaining entries of Q are represented by 
the form 

i + j - 1  

1 'rskCik(k+i-j), 2<j<i ,  
k = i - j + l  

i + j - 1  

1 Q r s k C i k ( k + i - j ) ,  I k = j - i + l  

where the coefficient Cikr are defined in terms of the b-coefficients of (5) by 

It is clear from these results that the Chebyshev polynomial basis is substantially easier to use 
than any other polynomial basis, simply because the formula for T,(x) T,(x) contains only two 
terms rather than the multitude of terms arising from other families of polynomials. 

4. EXAMPLE 1 

Gardner et al." display the deficiencies of the Chebyshev spectral representation for the 
fourth-order boundary value problem 

u"" + Ru"' - d' = 0, - 1 < x < 1, U( - 1) = U( 1) = u'( - 1) =u'( l )  = 0, (21) 
where o is the eigenvalue and R is a real parameter. They point out that even in such 
a straightforward equation the traditional spectral approach generates the spurious eigenvalue 
o=O when R=O. It is easily verified that 

u(~)=A[cosh(rnx)-coshrn] +B[sinh(rnx)-xsinhrn], rn=J(RZ+4a), 

satisfies the boundary conditions u(1) = u( - 1) = 0. The eigencondition 

(22) 
~ 0 s h [ ( R ~ + 4 a ) ' / ~ ]  )+20sinh [(R2+40)1/2] =O 

f(o) = (R2 + 40)"' 
cosh R cosh R 

can be established from the requirement u'( 1) = u'( - 1) = 0. Indeed, the spurious eigenvalue 
satisfies the eigencondition. Under the change of variables 

(23) Y l = W  Y 2  = u', y3  = u", y ,  = u"' 
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this problem can be rewritten as the fourth-order system Y ' = A Y + o B Y ,  where Y has its usual 
meaning and A and B are respectively the real matrices 

0 1 0  0 0 0 0  

A = [ '  0 0 0  ! I 1  .[. 0 0 0 0 '  '1 (24) 

0 0 0 - R  0 0 1 0  

Without any further mathematical effort it is immediately obvious that the final eigenvalue 
problem reduces to E V =  OFF', where the appropriate Chebyshev block forms of the matrices 
E and F are 

0 D - I  0 0 0 0  
O O D  
0 0 0 D+RI O O I O  

in which D is the M x M Chebyshev differentiation matrix (13) and where the Mth, 2Mth, 3Mth 
and 4Mth rows of F are cleared and the same rows of E are overwritten respectively by the 
4M-dimensional vectors 

p ,  o,o,o, Q, O,O,O, 0, p ,  o,o, 0, Q, O,O, 
(25) 

P = ( l ,  1,1,. . . , M times), Q=(1, - l , l ,  -1,. . . , M times). 

The vectors P and Q arise from the well-known results that TJ1) = 1 and T,( - 1) =( - 1)". During 
the investigation of equation (21), no spurious solutions arose. Compared with the traditional 
formulation of the problem as described in Reference 12, this formulation is as close to trivial as 
could reasonably be expected. When R=O, the solutions of the eigencondition (22) can be 
represented by o = - a t ,  where ak, k 2 0, satisfies ak = tan ak and can be estimated to high accuracy 
as the fixed point of the iterative scheme y,, - kn= tan- y n ,  yo = kn + 1. Table I displays the top 
of the spectrum (ordered in decreasing real part) when R = 0 for various numbers of Chebyshev 
polynomials. 

Results for the first two eigenvalues of this problem, generated using traditional Chebyshev 
methods, are presented in Reference 12 and merit some comparison with Table I. Two comments 
are worth a mention. For a given number of Chebyshev polynomials the accuracy returned by the 
procedure of this paper is clearly superior and so there is partial compensation for the additional 
size of the spectral matrices. More interestingly, the results of Reference 12 suggest that increasing 
the number of Chebyshev polynomials is causing a deterioration in the accuracy of the leading 
eigenvalue and this deterioration does not seem to be remedied by the modified scheme 

Table I. Eigenvalues at R=O 

Eigenvalue Eigenvalue Eigenvalue Accurate 
( M  = 10) (M=1.5) (M = 25) value 

-9'86961365 - 9.86960440 - 9.86960440 - 9.86960440 
- 20.1941 7167 - 2019072851 -20.19072856 -20.19072856 
-39.68733153 - 39.47845704 - 39.47841760 - 39.47841760 
- 62.64744349 - 59.67978632 - 59.67951594 -59.67951594 
- 119'0979878 - 88.84327363 - 88.82643962 - 88.82643961 
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Table 11. Eigenvalues at R = 4  

Eigenvalue ( M  = 30) f (4 

- 17.9 12921 80 & 9.458401441 
- 52.95474066 f 13.77106493i ( I - i )x  
- 107.44870494 f 16.3235272% (-1-7i)x 

( -7+5i )x  1 0 - l ~  

advocated in Reference 12. Results generated for the fourth-order system do not appear to display 
this instability. 

As a further illustration, eigenvalues of (21) were computed when R = 4 and the results are 
displayed in Table 11, together with the value of f(a). In this case the leading eigenvalues are 
complex (nature changes around R = 2). 

5. EXAMPLE2 

The linear stability analysis of an incompressible, viscous, convecting magnetohydrodynamic 
fluid contained between horizontal boundaries z = 0 and 1 and subject to a constant gravitational 
acceleration in the negative z-direction involves the determination of the eigenvalues CT of the 
system of non-dimensionalized equations 

o(D2-a2)w-aPmDb=(D2-u2)2w-Ra28-QD2w,  
(26) 

aPmb=QDw +(D2  -a2 )b ,  O P , ~ = ( D ~  - u ~ ) ~ + R w ,  

where w is the axial velocity component, a is the wave number, R2 is the Rayleigh number, 0 is the 
temperature, b is the axial component of magnetic induction, Q is the Chandrasekhar number, P, 
and P ,  are the viscous and magnetic Prandtl numbers respectively and D is the differential 
operator d/dz. A detailed discussion of this system can be found in Reference 15. To make the 
problem more specific, consider both boundaries to be thermally conducting, magnetically 
insulating, stationary and stress-free so that 

w=o,  D2w=0,  8=0, Db=O on z=O, 1 .  (27) 
In terms of the system variables 

y1=w,  Y 2  = Dw, y 3  = D’w, y4=D3w,  
(28) 

Y , = 4  Y 6  =DO, y , = b ,  Y ,  = Db, 

equations (26) can be reformulated in the form Y’ = A Y + aBY, where A and B are the real 8 x 8 
matrices 

A =  

0 
0 ~i 0 

1 0 0 0 0 0 0  
0 1 0 0 0 0 0  
0 0 1 0 0 0 0  
0 Q+2a2 0 Ra2 0 0 0 
0 0 0 0  1 0 0  
0 0 O a 2 0 0 0  
0 0 0 0 0 0 1  

- Q  0 0 0 O a 2 0  
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B= 

- 
0 0 0 0 0 0 0  0 
0 0 0 0 0 0 0  0 
0 0 0 0 0 0 0  0 

-a2  0 1 0 0 0 0 -P,  
0 0 0 0 0 0 P ,  0 
0 0 0 0 0 0 0  0 

- 0 0 0 0 0 0 P ,  0 

As in Example 1, equations (26) have no variable coefficients and can be instantly converted into 
the spectral representation EV=nf'V, where E and F have the block forms 

D - I  0 0 
O D  - I  0 

0 D - I  
0 -(Q+2a2)1 D 
0 0 0 
0 0 0 1; 0 QI 0 0 0 0 

E= 

0 0  

0 0 0 0 0 0  0 
0 0 0 0 0 0  0 
0 0 0 0 0 0  0 

0 1 0 0 0 0 
0 0 0 0 0 0 P , I  
0 0 0 0 0 0  0 
0 0 0 0 0 0 P , I  

0 0 0 0  
0 0 0 0  
0 0 0 0  

- R a Z I  0 0 0 
D - I 0  0 

--'I D 0 0 

0 0 -a21 D 
0 0 D -1  

0 

0 
0 
0 

and where the Mth, 2Mth,. . . ,8Mth rows of F are cleared and then corresponding rows of 
E are filled respectively with the 8M-dimensional vectors 

p,o,o,o,o,o,o,o, Q, O,O,O, O,O,O,O, 090, p ,  o,o,o, 090, O,O, Q, O,O,O,O,O, 

o,o, 0, 0, P ,  o,o,o, O,O,O,O,Q,O,O,O, ~ ,~ ,0 ,0 ,0 ,0 ,0 ,~ ,  O,O,O,O,O,O,O,Q, 

with P and Q as defined in (25). 
For computational purposes let P, = 1, P, = 3, Q = 100 and a = 3.702. It is well known that 

overstability is possible in this problem whenever P,  > P, and for the chosen parameters it is 
strongly preferred. Table I11 presents the two most competitive eigenvalues (in the sense of largest 
real part) for a range of R2-values above Rzrit. 

These results display some well-known features of eigenvalue problems and nicely illustrate the 
true value of spectral methods. It would be wrong to analyse the stability of equations (26) using 
compound matrices or inverse iterition, since unless you know exactly where to look at each step 
(generally you do not), the only critical value of R2 that could sensibly be computed by these 
methods is R2 2653.7, i.e. r~ = 0, and this is not correct. In effect, a spectral method is essential for 
problems of this type. Even if you think you know where to look, the very unstable behaviour of 
the critical eigenvalue around R2 =2600 ought to persuade you to reconsider your strategy. Of 
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Table 111. Eigenvalues for selected R*-values 

R2 

2550 
2590 
2591 
2592 
2593 
2652 
2653 
2654 
2655 

Top of spectrum 

1.9935 +2.0141i 
2.1525k0.52291 
2.1565 f0.42281 
2.1605 +0.2898i 

2.2680 and 2.0608 
4.1654 and 0.0274 
4.7893 and 0.01 13 

4.8131 and -0-0046 
4.8367 and -00204 

course, compound matrices or inverse iteration can be very effectively employed to check 
eigenvalues computed by spectral methods. 

6.  EXAMPLE3 

The Orr-Sommerfeld equation occurs in the linear stability analysis of the pressure-driven 
laminar flow of a Navier-Stokes fluid between two stationary parallel plates and has the 
non-dimensional form 

(0’ - a’)’v=iaR[(l -x2  - a)(D’ -u ’ )  + 2]u, x E( - 1, l), (3 1) 
where D = d/dx, v(x) is the perturbed velocity component normal to the horizontal boundaries 
x =  - 1 and 1, R is the Reynolds number and a is the wave number. Equation (31) is to be solved 
with boundary conditions 

dv 
dx u(x)=-=O on x= -1, 1. (32) 

Y l ( 4  = 44, Y 2 (4 = Do, Y 3 M  = D 2 4  Y 4 (4 = D 3 4  (33) 

In terms of the system variables 

equation (31) has the standard form Y‘=AY+aBY, in which A and B are the matrices 

0 1 0 0 0  0 

A = [  0 0 0 0 1 ”]. 1 .-[o 0 0  O ; i], (34) 

P 2 T 2 ( x ) - 8 3  P4-pIT2(x) 0 2P2 0 -2P1 0 

where the coefficients P I ,  Pz, P3 and P4 are defined by 

iaR ia3R ia3R iaR P4 = 2a2 +--. P3 = a4 - 2iaR +- 
2 ’  2 P1 =-p P z = 2 ,  

This problem thus has the Chebyshev spectral representation E V =  oF V, where 

- I  0 0 0 0  D 

E = [  0 0 - I  D -I ‘1, F = [  i i], (35) 

P3I-PzQ 0 P1Q-P4I D 2pz1 0 - 2 p l l  
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Table IV. Eigenvalues of Orr-Sommerfeld equation with a= 1 
~ ~~ 

R = 104, M = 40 ~ = 1 0 5 ,  M = ~ O  R=106, M=80 ~ = 1 0 7 .  M = I ~ O  
~ ~~ 

0.23752649 + 0.00373967i 0.98881959 -0.01 116361i 0.99646446 -0aI353387i 099888197 -0~00111787i 
0,96464251 -0.03518658i 0.14592479-0.01504204i 0,99363603 -04)0636015i 0,99798754-0.00201208i 
0.93635 178 - 0.06325 157i 0.97987513 -0,02008635i 0.99080759 -0.00918649i 0.9970931 1 -0.00290629i 
0,90805630 - 0.09 13 12881 0.97O93050 - 0.02900898i 0.98797947 - 0.12012779i 0.99619868 - O.Oo380051i 
0,87975567-0.1 193709% 0,19820039-0.0373108Oi 0.06592528 -0.01398326i 0.99530425 -0.00469472i 

in which the auxiliary matrix Q is defined by 

Qi(i+l)=i,  l< i<M-1 ,  Q ( i + l ) i = t ,  3 6 i < M ,  Q21=1, rest zero 

and where the Mth, 2Mth, 3Mth and 4Mth rows of F are cleared and the same rows of E are 
overwritten respectively by the 4M-dimensional vectors 

p ,  O,O, 0, Q, O,O, 0, 0, p ,  020, 0, Q,  0,O. 
The Orr-Sommerfeld equation differs slightly from the previous examples in the respect that 

the eigenvalues are ordered by decreasing imaginary part. The results presented in Table IV show 
the five top members of the eigenlist and have been generated with a = l  and R in the range 
lo4-10’. This is a severe test of any numerical eigenvalue method and it is significant that no 
spurious eigenvalues were ever detected. The number of polynomials used is in excess of the 
minimum required for sensible convergence and is included for rough guidance. 

7. EXAMPLE4 

The linear stability analysis of convection in a porous medium has been discussed by StraughanI6 
and involves the investigation of the eigenvalue problem 

O<z<l, 
( O 2 - a 2 ) w =  -Ra2H(z)8 

aP,O = RN(z)w + (D2 - a 2 ) 8  

e(o)=w(o)le(i)=w(i)=o, (37) 

where P, is the Prandtl number, R2 is the Rayleigh number, f3 and w are perturbations in 
temperature and the axial component of velocity respectively and the functions H(z) and N(z) are 
defined in terms of two constants E and 6 and two constitutive functions h(z) and q(z) by the 
formulae 

When E and 6 are small, an analysis due to Davis’ leads to the conclusion that the eigenvalues of 
(36), (37) are real. However, if H(z)=N(z), it is a straightforward matter to verify that 

H(z) = 1 + &h(Z), N ( z )  = 1 + 6q(z). 

C J ~ ~ P ~ ~ :  I el2 dz = j: ( 1  DW I + a2 I w / )  dz - a2 ( I  D0l2 + a2 I O l z )  dz 
J O 1  

(38) 

and hence (T is real for any function H(z), and this raises the conjecture that (T is real for a large 
class of functions N ( z )  and H(z ) ,  i.e. a principle of exchange of stabilities holds in this case, 
although traditional analytic methods, to our knowledge, have been unable to establish the 
validity of this conjecture. In terms of the system variables 

y1 =w, Y 2  = Dw, Y,=& Y ,  = Do, 
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equations (36) can be rewritten in the form Y'  = A  Y + aB Y,  where A and B are given by 

0 1 
a2 0 
0 0 

0 
-Ra2H(z) 

0 
a2 

1 '  1 0 

(39) 

leading to a spectral representation of the problem in the form EV= OF V, with 

- I  0 0 0 0  0 

E=[+' ':" :I], 
E = l  0 : 0 : 0 P,I :], (40) 

R N  - aZI  

where H and N are spectral matrices appropriate to the functions H(z) and N(z) and in which the 
Mth, 2Mth, 3Mth and 4Mth rows of F are cleared and the same rows of E are overwritten 
respectively by the 4M-dimensional vectors 

P,O,O,O, Q,o,O,O, O,O,P,O, o,o, Q, 0. 
Results for a variety of function pairs of polynomial/non-polyhomial type and with multiple signs 
in [0, 11 suggest that the conjecture is true, i.e. system (36), (37) has real eigenvalues for a large 
variety of function pairs. 

8. EXAMPLE5 

Davis' ' investigated the buoyancy-surface tension instability in a horizontal layer of viscous 
fluid using energy methods. The heart of the analysis requires the determination of p, where 

-=Max 1 ( p + N  S1 [ w 6 d A d r ~ S  1 0?dA), 
P p 0 A ( z )  P A(1)  az 

1 1  

!O !A@) 
( I  Vvl' + IV61') dA dz = 1, 

where the horizontal layers are z=O and 1, A(z) is the cross-section of the convection cells on 
constant z-planes and N and p ( > O )  are known parameter constants. Also, w is the axial 
component of the solenoidal vector v and has the property that v=O on the boundary z=O 
whereas w = 0 on the boundary z = 1. Similarly, 0 is a scalar function with value zero on z = 0. In 
addition, v and 0 are assumed to satisfy whatever differentiability conditions are necessary for the 
construction of the Euler equations for functional (41). 

The analytical details of the constrained variational problem are suppressed except to say that 
the presence of surface integrals in the functional leads to a set of transversality conditions. The 
Euler equations are ultimately reduced to the form 
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in which a is essentially a wave number and w and 0 satisfy the boundary conditions 

1 w =o 
Dw=O onz=0 ,  D z w  = - p ( a 2 / 2  Jp)0  on z= 1. w=ol e=o Dl3 = - p (  1/2Jp)Dw 

In terms of the system variables 

y l = w ,  y,=Dw, y3=D2w, y4=D3w, y5=0, y6=D6,  (44) 
the Euler equations (42) can be written in the form Y ’  = A Y+ p B Y, in which A and B are given by 

A =  

- 
0 1 0 0 0 0 -  
0 0 1 0 0 0  
0 0 0 1 0 0  

-a4 O 2a2 O O O 
0 0 0 0 0 1  

- 0 0 0 O a 2 0  - 

B =  

- 0  0 0 0  0 0- 
0 0 0 0  0 0 
0 0 0 0  0 0 
0 O O O a ’ G O  
0 0 0 0  0 0 

- G O O 0  0 0 

1291 

(43) 

, (45) 

where G = ( p +  N ) / 2 J p .  The boundary conditions (43) can now be expressed as 

As in the previous examples, it is immediately obvious that the system (42) can be expressed in the 
form E V = p F V ,  where the spectral matrices E and F are 

E =  

- - 
D - I  0 0 0 0  
O D  - I  0 0 0 
0 0  D - I 0  0 

a41 0 -2a21 D 0 0 
0 0  0 0 D - I  
0 0  0 0 -a21  D - - 

- 
0 0 0 0  0 0 
0 0 0 0  0 0 
0 0 0 0  0 0 
0 0 0 0 a2GI 0 
0 0 0 0  0 1 

0 0 - 

Table V. Values of Marangoni number M a  

16.78 2.223 0 56.773 
2243 2091 10 33.636 
35.22 2063 25 19.732 
59- 12 2.065 50 11.460 

108.4 2.072 100 6.191 
257.7 2079 250 2.594 
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in which the Mth, 2Mth,. . . ,6Mth rows of E and F are respectively overwritten by the 
6M-dimensional vectors 

This problem is different from the other examples to the extent that the eigenvalue appears in the 
boundary conditions. Calculated values of M ,  = p 2 ,  the Marangoni number, are presented in 
Table V for various values of p, a and N .  

9. CONCLUSIONS 

We believe that the variant of the spectral tau method exemplified in this paper can be easily and 
effectively applied to an extensive range of linear eigenvalue problems arising in many areas of 
applied mathematics, theoretical physics, geophysics and engineering science. The critical com- 
ponents of this method are now reviewed. 

(i) The equations describing the mathematical problem are reformulated as a system of 
first-order equations. This is frequently easy to do since their formulation is usually based 
on a series of conservation laws, each of which generates a low-order differential equation. 
Often the coefficients of these equations are non-constant and so, on practical grounds 
alone, in many cases it may well be unreasonable to assimilate the individual conservation 
equations into one high-order differential equation in keeping with the strategy of more 
traditional spectral methods. 

(ii) Each variable in the first-order system is now assigned its own spectral expansion. In this 
way derivatives are treated as independent variables and therefore enjoy a more accurate 
numerical representation. Although this leads to larger spectral matrices, numerical 
calculations indicate that the spectral expansion of each variable requires lower poly- 
nomials to achieve a prescribed accuracy. The convergence characteristics of the spectral 
method are so good that expansions containing 15-20 polynomials are frequently 
adequate. Not only is this a practical way of analysing systems of substantial order, but the 
superior representation of high-order derivatives appears to render the technique less 
susceptible to the creation of spurious eigenvalues. None arose in any, of the discussed 
examples. 

(iii) The spectral matrices are constructed in block form and boundary conditions are ex- 
pressed as algebraic relations connecting spectral coefficients. Since the mathematical 
problem is expressed as a first-order system, boundary conditions, which traditionally 
involve derivatives of the dependent variable, are now straightforwardly expressed as 
linear combinations of the system variables. In particular, it is no longer necessary to 
evaluate derivatives of the spectral basis polynomials at boundary points. The boundary 
information overwrites the last row of each block. 

(iv) The final eigenvalue problem is now treated with the ‘QR’ algorithm or the like. A variety 
of high-quality subroutines are available for this purpose (e.g. NAG or IMSL software 
libraries). 
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In addition to elucidating different aspects of the methodology, the examples presented in this 
paper have been chosen because they are of contemporary interest or have been judged by other 
authors to be interesting in their own right. 

The Orr-Sommerfeld equation (Example 3) occupies a niche in the folklore of spectral analysis, 
partly for historical reasons, but also because its solution in the vicinity of 1x1 = 1 exhibits 
boundary layer behaviour with typical scale thickness (uR)-’’~. Thus it is an ideal vehicle for 
testing eigenvalue methods, since the procedure can be made arbitrarily severe by suitably 
increasing R.  The pioneering paper of Orszag’ investigated the case a = l ,  R = 1 0 4  and these 
values have now become historically associated with the Orr-Sommerfeld equation. Increasing 
R makes the equation stiffer and therefore more susceptible to the generation of spurious 
eigenvalues. We encountered no numerical difficulties up to R = lo9, although we did experience 
a spot of bother from computing services. As an aside, the results of Table IV indicate that the 
competitive eigenvalue is a discontinuous function in parameter space. It is for this reason that 
spectral techniques are so important; critical eigenvalues cannot be found in this application 
using a tracking method. The critical eigenvalue at  R = lo4 occupies the second slot at R = lo’, 
the fifth slot at  R = lo6 and has completely faded at R = lo7. 

Example 1 was selected on the basis that it gratuitously proffers spurious eigenvalues and has 
recently attracted research interest for this reason. Gardner et a/.’’ develop a technique which 
they claim completely eradicates this difficulty, but, judging from the work involved in treating 
this low-order equation, we believe that the technicalities of their approach severely limit its 
applicability. Although we do not claim to have eradicated spurious eigenvalues, none appeared 
in this example and, moreover, the achieved accuracy seems more reliable than that attained by 
Gardner et al. This is easily checked by direct evaluation of the eigencondition. We speculate that 
this anomaly may well be due to the numerical degradation incurred during the extensive 
numerical preamble required by those authors before arriving at their eigenvalue problem. 

Examples 2 and 4 pertain to Benard or buoyancy-driven convection. Problems of this ilk are 
fairly common in the literature of applied mathematics and geophysics and so it is appropriate 
that the related eigenvalue problems should be represented here. Example 2 characterizes the 
linear stability analysis of a horizontal layer of magnetic fluid, whereas Example 4 describes 
a comparable stability problem for the convection of a viscous fluid through a porous medium. 
Both examples are presented in their simplest possible form When rotation effects are incorpor- 
ated into Example 2, as may be necessary in geophysical or astrophysical applications, the order 
of the differential system jumps to 12. Table I11 from Example 2 nicely illustrates the sensitivity of 
the spectral analysis to small changes in the Rayleigh number R2. 

Finally, Example 5 is included to remind readers that eigenvalue problems often stem from 
constrained variational problems, in this case something akin to a Rayleigh quotient. This 
particular application is unusual in that the eigenvalue appears in both the Euler equations and 
the related boundary conditions (Steklov problem). This frequently happens when the variational 
problem involves conditions of transversality. 

Looking further afield, we believe the applications for this technique are many and varied. 
A large number of physical systems can be simplistically considered in terms of driving mechan- 
isms such as buoyancy, surface tension, salting, etc. interacting with damping mechanisms such as 
viscosity, resistivity, imposed magnetic fields, etc. The stability analyses of such systems often lead 
directly to eigenvalue problems for linear theory or lead to constrained variational problems for 
energy theory. If the related eigenvalue problem can be sensibly expressed in terms of ordinary 
differential equations, e.g. via a normal modes analysis, then the methodology of this paper will be 
most appropriate, particularly if the nature of the spectrum is unknown or the principle of 
exchange of stabilities is inoperative. 
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